128 lines
2.8 KiB
Scheme
128 lines
2.8 KiB
Scheme
#lang sicp
|
|
(define (average x y) (/ (+ x y) 2))
|
|
(define (square x) (* x x))
|
|
(define (cube x) (* x x x))
|
|
(define (% a b)
|
|
(remainder a b))
|
|
|
|
(define (sqrt x)
|
|
(define (good-enough? guess)
|
|
(< (abs (- (square guess) x)) 0.00001))
|
|
(define (improve guess)
|
|
(average guess (/ x guess)))
|
|
(define (sqrt-iter guess)
|
|
(if (good-enough? guess)
|
|
guess
|
|
(sqrt-iter (improve guess))))
|
|
(sqrt-iter 1.0))
|
|
|
|
;(define (factorial n)
|
|
; (if (= n 1) 1 (* n (factorial (- n 1)))))
|
|
|
|
(define (factorial n)
|
|
(define (fact-iter product counter max-count)
|
|
(if (> counter max-count)
|
|
product
|
|
(fact-iter (* counter product)
|
|
(+ counter 1)
|
|
max-count)))
|
|
(fact-iter 1 1 n))
|
|
|
|
|
|
(define (A x y)
|
|
(cond ((= y 0) 0)
|
|
((= x 0) (* 2 y))
|
|
((= y 1) 2)
|
|
(else (A (- x 1)
|
|
(A x (- y 1))))))
|
|
|
|
;(define (fib n)
|
|
; (cond ((= n 0) 0)
|
|
; ((= n 1) 1)
|
|
; (else (+ (fib(- n 1))
|
|
; (fib(- n 2))))))
|
|
|
|
(define (fib n)
|
|
(define (fib-iter a b count)
|
|
(if (= count 0)
|
|
b
|
|
(fib-iter (+ a b) a (- count 1))))
|
|
|
|
(fib-iter 1 0 n))
|
|
|
|
|
|
(define (count-change amount)
|
|
(define (first-denomination kinds-of-coins)
|
|
(cond ((= kinds-of-coins 1) 1)
|
|
((= kinds-of-coins 2) 5)
|
|
((= kinds-of-coins 3) 10)
|
|
((= kinds-of-coins 4) 25)
|
|
((= kinds-of-coins 5) 50)))
|
|
|
|
(define (cc amount kinds-of-coins)
|
|
(cond ((= amount 0) 1)
|
|
((or (< amount 0)
|
|
(= kinds-of-coins 0))
|
|
0)
|
|
(else
|
|
(+ (cc amount (- kinds-of-coins 1))
|
|
(cc (- amount (first-denomination kinds-of-coins))
|
|
kinds-of-coins)))))
|
|
(cc amount 5))
|
|
|
|
|
|
(define (ptri n)
|
|
(if (< n 3) n
|
|
(+
|
|
(ptri (- n 1))
|
|
(+ (* (ptri (- n 2)) 2)
|
|
(* (ptri (- n 3)) 3)))))
|
|
|
|
|
|
(define (p x) (- (* 3 x) (* 4 (cube x))))
|
|
(define (sine angle)
|
|
(if (not (> (abs angle) 0.1))
|
|
angle
|
|
(p (sine (/ angle 3.0)))))
|
|
|
|
;(define (expt b n)
|
|
; (if (= n 0) 1 (* b (expt b (- n 1)))))
|
|
|
|
(define (expt b n) (expt-iter b n 1))
|
|
(define (expt-iter b counter product)
|
|
(if (= counter 0)
|
|
product
|
|
(expt-iter b
|
|
(- counter 1)
|
|
(* b product))))
|
|
|
|
(define (fast-exp b n)
|
|
(cond ((= n 0)
|
|
1)
|
|
((even? n)
|
|
(square (fast-exp b (/ n 2))))
|
|
(else
|
|
(* b (fast-exp b (- n 1))))))
|
|
|
|
(define (gcd a b)
|
|
(if (= b 0)
|
|
a
|
|
(gcd b (% a b))))
|
|
|
|
(define (smallest-divisor n)
|
|
(find-divisor n 2))
|
|
|
|
(define (find-divisor n test-divisor)
|
|
(cond ((> (square test-divisor) n)
|
|
n)
|
|
((divides? test-divisor n)
|
|
test-divisor)
|
|
(else (find-divisor
|
|
n
|
|
(+ test-divisor 1)))))
|
|
|
|
(define (divides? a b)
|
|
(= (% b a) 0))
|
|
|
|
(define (prime? n)
|
|
(= n (smallest-divisor n))) |