Generate map with cellular automata, completes section 4.5

This commit is contained in:
Timothy Warren 2021-12-03 15:55:07 -05:00
parent e8c03b9536
commit 545deb24d8
4 changed files with 266 additions and 42 deletions

View File

@ -5,7 +5,7 @@ use specs::prelude::*;
use specs::saveload::{ConvertSaveload, Marker}; use specs::saveload::{ConvertSaveload, Marker};
use specs_derive::*; use specs_derive::*;
#[derive(Component, ConvertSaveload, Copy, Clone)] #[derive(Component, ConvertSaveload, Default, Copy, Clone)]
pub struct Position { pub struct Position {
pub x: i32, pub x: i32,
pub y: i32, pub y: i32,

View File

@ -0,0 +1,196 @@
use super::MapBuilder;
use crate::{components::Position, spawner, Map, TileType, SHOW_MAPGEN_VISUALIZER};
use rltk::RandomNumberGenerator;
use specs::prelude::*;
use std::collections::HashMap;
pub struct CellularAutomataBuilder {
map: Map,
starting_position: Position,
depth: i32,
history: Vec<Map>,
noise_areas: HashMap<i32, Vec<usize>>,
}
impl MapBuilder for CellularAutomataBuilder {
fn build_map(&mut self) {
self.build();
}
fn spawn_entities(&mut self, ecs: &mut World) {
for area in self.noise_areas.iter() {
spawner::spawn_region(ecs, area.1, self.depth);
}
}
fn get_map(&self) -> Map {
self.map.clone()
}
fn get_starting_position(&self) -> Position {
self.starting_position
}
fn get_snapshot_history(&self) -> Vec<Map> {
self.history.clone()
}
fn take_snapshot(&mut self) {
if SHOW_MAPGEN_VISUALIZER {
let mut snapshot = self.map.clone();
for v in snapshot.revealed_tiles.iter_mut() {
*v = true;
}
self.history.push(snapshot);
}
}
}
impl CellularAutomataBuilder {
pub fn new(new_depth: i32) -> CellularAutomataBuilder {
CellularAutomataBuilder {
map: Map::new(new_depth),
starting_position: Position::default(),
depth: new_depth,
history: Vec::new(),
noise_areas: HashMap::new(),
}
}
fn build(&mut self) {
let mut rng = RandomNumberGenerator::new();
// First we completely randomize the map, setting 55% of it to be floor.
for y in 1..self.map.height - 1 {
for x in 1..self.map.width - 1 {
let roll = rng.roll_dice(1, 100);
let idx = self.map.xy_idx(x, y);
if roll > 55 {
self.map.tiles[idx] = TileType::Floor
} else {
self.map.tiles[idx] = TileType::Wall
}
}
}
self.take_snapshot();
// Now we iteratively apply cellular automata rules
for _i in 0..15 {
let mut newtiles = self.map.tiles.clone();
for y in 1..self.map.height - 1 {
for x in 1..self.map.width - 1 {
let idx = self.map.xy_idx(x, y);
let mut neighbors = 0;
if self.map.tiles[idx - 1] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx + 1] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx - self.map.width as usize] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx + self.map.width as usize] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx - (self.map.width as usize - 1)] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx - (self.map.width as usize + 1)] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx + (self.map.width as usize - 1)] == TileType::Wall {
neighbors += 1;
}
if self.map.tiles[idx + (self.map.width as usize + 1)] == TileType::Wall {
neighbors += 1;
}
if neighbors > 4 || neighbors == 0 {
newtiles[idx] = TileType::Wall;
} else {
newtiles[idx] = TileType::Floor;
}
}
}
self.map.tiles = newtiles.clone();
self.take_snapshot();
}
// Find a starting point; start at the middle and walk left until we find an open tile
self.starting_position = Position {
x: self.map.width / 2,
y: self.map.height / 2,
};
let mut start_idx = self
.map
.xy_idx(self.starting_position.x, self.starting_position.y);
while self.map.tiles[start_idx] != TileType::Floor {
self.starting_position.x -= 1;
start_idx = self
.map
.xy_idx(self.starting_position.x, self.starting_position.y)
}
// Find all tiles we can reach from the starting point
let map_starts: Vec<usize> = vec![start_idx];
let dijkstra_map = rltk::DijkstraMap::new(
self.map.width,
self.map.height,
&map_starts,
&self.map,
200.0,
);
let mut exit_tile = (0, 0.0f32);
for (i, tile) in self.map.tiles.iter_mut().enumerate() {
if *tile == TileType::Floor {
let distance_to_start = dijkstra_map.map[i];
// We can't get to this tile - so we'll make it a wall
if distance_to_start == f32::MAX {
*tile = TileType::Wall;
} else {
// If it is further away than our current exit candidate, move the exit
if distance_to_start > exit_tile.1 {
exit_tile.0 = i;
exit_tile.1 = distance_to_start;
}
}
}
}
self.take_snapshot();
// Place the stairs
self.map.tiles[exit_tile.0] = TileType::DownStairs;
self.take_snapshot();
// Now we build a noise map for use in spawning entities later
let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
noise.set_noise_type(rltk::NoiseType::Cellular);
noise.set_frequency(0.08);
noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
for y in 1..self.map.height - 1 {
for x in 1..self.map.width - 1 {
let idx = self.map.xy_idx(x, y);
if self.map.tiles[idx] == TileType::Floor {
let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
let cell_value = cell_value_f as i32;
#[allow(clippy::map_entry)]
if self.noise_areas.contains_key(&cell_value) {
self.noise_areas.get_mut(&cell_value).unwrap().push(idx);
} else {
self.noise_areas.insert(cell_value, vec![idx]);
}
}
}
}
}
}

View File

@ -1,11 +1,13 @@
mod bsp_dungeon; mod bsp_dungeon;
mod bsp_interior; mod bsp_interior;
mod cellular_automata;
mod common; mod common;
mod simple_map; mod simple_map;
use crate::{Map, Position}; use crate::{Map, Position};
use bsp_dungeon::BspDungeonBuilder; use bsp_dungeon::BspDungeonBuilder;
use bsp_interior::BspInteriorBuilder; use bsp_interior::BspInteriorBuilder;
use cellular_automata::CellularAutomataBuilder;
use common::*; use common::*;
use simple_map::SimpleMapBuilder; use simple_map::SimpleMapBuilder;
use specs::prelude::*; use specs::prelude::*;
@ -21,9 +23,10 @@ pub trait MapBuilder {
pub fn random_builder(new_depth: i32) -> Box<dyn MapBuilder> { pub fn random_builder(new_depth: i32) -> Box<dyn MapBuilder> {
let mut rng = rltk::RandomNumberGenerator::new(); let mut rng = rltk::RandomNumberGenerator::new();
match rng.roll_dice(1, 3) { match rng.roll_dice(1, 4) {
1 => Box::new(BspDungeonBuilder::new(new_depth)), 1 => Box::new(BspDungeonBuilder::new(new_depth)),
2 => Box::new(BspInteriorBuilder::new(new_depth)), 2 => Box::new(BspInteriorBuilder::new(new_depth)),
3 => Box::new(CellularAutomataBuilder::new(new_depth)),
_ => Box::new(SimpleMapBuilder::new(new_depth)), _ => Box::new(SimpleMapBuilder::new(new_depth)),
} }
} }

View File

@ -1,5 +1,5 @@
use crate::components::*; use crate::components::*;
use crate::{map::MAP_WIDTH, random_table::RandomTable, Rect}; use crate::{map::MAP_WIDTH, random_table::RandomTable, Map, Rect, TileType};
use rltk::{RandomNumberGenerator, RGB}; use rltk::{RandomNumberGenerator, RGB};
use specs::prelude::*; use specs::prelude::*;
use specs::saveload::{MarkedBuilder, SimpleMarker}; use specs::saveload::{MarkedBuilder, SimpleMarker};
@ -57,35 +57,61 @@ fn room_table(map_depth: i32) -> RandomTable {
/// fills a room with stuff! /// fills a room with stuff!
#[allow(clippy::map_entry)] #[allow(clippy::map_entry)]
pub fn spawn_room(ecs: &mut World, room: &Rect, map_depth: i32) { pub fn spawn_room(ecs: &mut World, room: &Rect, map_depth: i32) {
let mut possible_targets: Vec<usize> = Vec::new();
// Borrow scope - to keep access to the map separated
{
let map = ecs.fetch::<Map>();
for y in room.y1 + 1..room.y2 {
for x in room.x1 + 1..room.x2 {
let idx = map.xy_idx(x, y);
if map.tiles[idx] == TileType::Floor {
possible_targets.push(idx);
}
}
}
}
spawn_region(ecs, &possible_targets, map_depth);
}
pub fn spawn_region(ecs: &mut World, area: &[usize], map_depth: i32) {
let spawn_table = room_table(map_depth); let spawn_table = room_table(map_depth);
let mut spawn_points: HashMap<usize, String> = HashMap::new(); let mut spawn_points: HashMap<usize, String> = HashMap::new();
let mut areas: Vec<usize> = Vec::from(area);
// Scope to keep the borrow checker happy // Scope to keep the borrow checker happy
{ {
let mut rng = ecs.write_resource::<RandomNumberGenerator>(); let mut rng = ecs.write_resource::<RandomNumberGenerator>();
let num_spawns = rng.roll_dice(1, MAX_MONSTERS + 3) + (map_depth - 1) - 3; let num_spawns = i32::min(
areas.len() as i32,
rng.roll_dice(1, MAX_MONSTERS + 3) + (map_depth - 1) - 3,
);
if num_spawns == 0 {
return;
}
for _i in 0..num_spawns { for _i in 0..num_spawns {
let mut added = false; let array_index = if areas.len() == 1 {
let mut tries = 0; 0usize
while !added && tries < 20 {
let x = (room.x1 + rng.roll_dice(1, i32::abs(room.x2 - room.x1))) as usize;
let y = (room.y1 + rng.roll_dice(1, i32::abs(room.y2 - room.y1))) as usize;
let idx = (y * MAP_WIDTH) + x;
if !spawn_points.contains_key(&idx) {
spawn_points.insert(idx, spawn_table.roll(&mut rng));
added = true;
} else { } else {
tries += 1; (rng.roll_dice(1, areas.len() as i32) - 1) as usize
} };
} let map_idx = areas[array_index];
spawn_points.insert(map_idx, spawn_table.roll(&mut rng));
areas.remove(array_index);
} }
} }
// Actually spawn stuff // Actually spawn the monsters
for spawn in spawn_points.iter() { for spawn in spawn_points.iter() {
spawn_entity(ecs, &spawn);
}
}
/// Spawns a named entity (name in tuple.1) at the location in (tuple.0)
fn spawn_entity(ecs: &mut World, spawn: &(&usize, &String)) {
let x = (*spawn.0 % MAP_WIDTH) as i32; let x = (*spawn.0 % MAP_WIDTH) as i32;
let y = (*spawn.0 / MAP_WIDTH) as i32; let y = (*spawn.0 / MAP_WIDTH) as i32;
@ -105,7 +131,6 @@ pub fn spawn_room(ecs: &mut World, room: &Rect, map_depth: i32) {
"Bear Trap" => bear_trap(ecs, x, y), "Bear Trap" => bear_trap(ecs, x, y),
_ => {} _ => {}
} }
}
} }
fn orc(ecs: &mut World, x: i32, y: i32) { fn orc(ecs: &mut World, x: i32, y: i32) {