#![allow(non_upper_case_globals, non_camel_case_types, non_snake_case)] use std::arch::x86_64::*; use std::f64::consts::PI; use std::mem; #[repr(C)] struct body { position: [f64; 3], velocity: [f64; 3], mass: f64, } const SOLAR_MASS: f64 = 4. * PI * PI; const DAYS_PER_YEAR: f64 = 365.24; const BODIES_COUNT: usize = 5; static mut solar_Bodies: [body; BODIES_COUNT] = [ body { // Sun mass: SOLAR_MASS, position: [0.; 3], velocity: [0.; 3], }, body { // Jupiter mass: 9.54791938424326609e-04 * SOLAR_MASS, position: [ 4.84143144246472090e+00, -1.16032004402742839e+00, -1.03622044471123109e-01, ], velocity: [ 1.66007664274403694e-03 * DAYS_PER_YEAR, 7.69901118419740425e-03 * DAYS_PER_YEAR, -6.90460016972063023e-05 * DAYS_PER_YEAR, ], }, body { // Saturn mass: 2.85885980666130812e-04 * SOLAR_MASS, position: [ 8.34336671824457987e+00, 4.12479856412430479e+00, -4.03523417114321381e-01, ], velocity: [ -2.76742510726862411e-03 * DAYS_PER_YEAR, 4.99852801234917238e-03 * DAYS_PER_YEAR, 2.30417297573763929e-05 * DAYS_PER_YEAR, ], }, body { // Uranus mass: 4.36624404335156298e-05 * SOLAR_MASS, position: [ 1.28943695621391310e+01, -1.51111514016986312e+01, -2.23307578892655734e-01, ], velocity: [ 2.96460137564761618e-03 * DAYS_PER_YEAR, 2.37847173959480950e-03 * DAYS_PER_YEAR, -2.96589568540237556e-05 * DAYS_PER_YEAR, ], }, body { // Neptune mass: 5.15138902046611451e-05 * SOLAR_MASS, position: [ 1.53796971148509165e+01, -2.59193146099879641e+01, 1.79258772950371181e-01, ], velocity: [ 2.68067772490389322e-03 * DAYS_PER_YEAR, 1.62824170038242295e-03 * DAYS_PER_YEAR, -9.51592254519715870e-05 * DAYS_PER_YEAR, ], }, ]; unsafe fn offset_Momentum(bodies: *mut body) { for i in 0..BODIES_COUNT { for m in 0..3 { (*bodies.add(0)).velocity[m] -= (*bodies.add(i)).velocity[m] * (*bodies.add(i)).mass / SOLAR_MASS; } } } unsafe fn output_Energy(bodies: *mut body) { let mut energy = 0.; for i in 0..BODIES_COUNT { // Add the kinetic energy for each body. energy += 0.5 * (*bodies.add(i)).mass * ((*bodies.add(i)).velocity[0] * (*bodies.add(i)).velocity[0] + (*bodies.add(i)).velocity[1] * (*bodies.add(i)).velocity[1] + (*bodies.add(i)).velocity[2] * (*bodies.add(i)).velocity[2]); // Add the potential energy between this body and // every other body for j in i + 1..BODIES_COUNT { let mut position_Delta = [mem::MaybeUninit::::uninit(); 3]; for m in 0..3 { position_Delta[m] .as_mut_ptr() .write((*bodies.add(i)).position[m] - (*bodies.add(j)).position[m]); } let position_Delta: [f64; 3] = mem::transmute(position_Delta); energy -= (*bodies.add(i)).mass * (*bodies.add(j)).mass / f64::sqrt( position_Delta[0] * position_Delta[0] + position_Delta[1] * position_Delta[1] + position_Delta[2] * position_Delta[2], ); } } // Output the total energy of the system println!("{:.9}", energy); } unsafe fn advance(bodies: *mut body) { const INTERACTIONS_COUNT: usize = BODIES_COUNT * (BODIES_COUNT - 1) / 2; const ROUNDED_INTERACTIONS_COUNT: usize = INTERACTIONS_COUNT + INTERACTIONS_COUNT % 2; #[repr(align(16))] #[derive(Copy, Clone)] struct Align16([f64; ROUNDED_INTERACTIONS_COUNT]); static mut position_Deltas: [Align16; 3] = [Align16([0.; ROUNDED_INTERACTIONS_COUNT]); 3]; static mut magnitudes: Align16 = Align16([0.; ROUNDED_INTERACTIONS_COUNT]); { let mut k = 0; for i in 0..BODIES_COUNT - 1 { for j in i + 1..BODIES_COUNT { for m in 0..3 { position_Deltas[m].0[k] = (*bodies.add(i)).position[m] - (*bodies.add(j)).position[m]; } k += 1; } } } for i in 0..ROUNDED_INTERACTIONS_COUNT / 2 { let mut position_Delta = [mem::MaybeUninit::<__m128d>::uninit(); 3]; for m in 0..3 { position_Delta[m] .as_mut_ptr() .write(*(&position_Deltas[m].0 as *const f64 as *const __m128d).add(i)); } let position_Delta: [__m128d; 3] = mem::transmute(position_Delta); let distance_Squared: __m128d = _mm_add_pd( _mm_add_pd( _mm_mul_pd(position_Delta[0], position_Delta[0]), _mm_mul_pd(position_Delta[1], position_Delta[1]), ), _mm_mul_pd(position_Delta[2], position_Delta[2]), ); let mut distance_Reciprocal: __m128d = _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(distance_Squared))); for _ in 0..2 { distance_Reciprocal = _mm_sub_pd( _mm_mul_pd(distance_Reciprocal, _mm_set1_pd(1.5)), _mm_mul_pd( _mm_mul_pd( _mm_mul_pd(_mm_set1_pd(0.5), distance_Squared), distance_Reciprocal, ), _mm_mul_pd(distance_Reciprocal, distance_Reciprocal), ), ); } (magnitudes.0.as_mut_ptr() as *mut __m128d) .add(i) .write(_mm_mul_pd( _mm_div_pd(_mm_set1_pd(0.01), distance_Squared), distance_Reciprocal, )); { let mut k = 0; for i in 0..BODIES_COUNT - 1 { for j in i + 1..BODIES_COUNT { let i_mass_magnitude = (*bodies.add(i)).mass * magnitudes.0[k]; let j_mass_magnitude = (*bodies.add(j)).mass * magnitudes.0[k]; for m in 0..3 { (*bodies.add(i)).velocity[m] -= position_Deltas[m].0[k] * j_mass_magnitude; (*bodies.add(j)).velocity[m] += position_Deltas[m].0[k] * i_mass_magnitude; } k += 1; } } } for i in 0..BODIES_COUNT { for m in 0..3 { (*bodies.add(i)).position[m] += 0.01 * (*bodies.add(i)).velocity[m]; } } } } fn main() { unsafe { offset_Momentum(solar_Bodies.as_mut_ptr()); output_Energy(solar_Bodies.as_mut_ptr()); let c = std::env::args().nth(1).unwrap().parse().unwrap(); for _ in 0..c { advance(solar_Bodies.as_mut_ptr()); } output_Energy(solar_Bodies.as_mut_ptr()); } }