Create ideomatic rust version
This commit is contained in:
parent
fd41a5dbb0
commit
5d27ffc192
2
.cargo/config
Normal file
2
.cargo/config
Normal file
@ -0,0 +1,2 @@
|
||||
[build]
|
||||
rustflags = [ "-C", "target-cpu=core2" ]
|
@ -1,9 +1,14 @@
|
||||
[package]
|
||||
name = "lrtdw"
|
||||
name = "nbody"
|
||||
version = "0.1.0"
|
||||
authors = ["Timothy Warren <twarren@nabancard.com>"]
|
||||
authors = ["Timothy Warren <tim@timshomepage.net>"]
|
||||
edition = "2018"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
|
||||
[profile.release]
|
||||
opt-level = 3
|
||||
codegen-units = 1
|
||||
debug = 2
|
||||
|
357
src/main.rs
357
src/main.rs
@ -1,310 +1,203 @@
|
||||
// The Computer Language Benchmarks Game
|
||||
// https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
|
||||
//
|
||||
// Contributed by Mark C. Lewis.
|
||||
// Modified slightly by Chad Whipkey.
|
||||
// Converted from Java to C++ and added SSE support by Branimir Maksimovic.
|
||||
// Converted from C++ to C by Alexey Medvedchikov.
|
||||
// Modified by Jeremy Zerfas.
|
||||
// Converted to Rust by Cliff L. Biffle
|
||||
//! n-body simulation in Rust - naive version
|
||||
//!
|
||||
//! This program knows nothing about vector units, alignment, locality, and the
|
||||
//! like. It does the math in the simplest way I could come up with, and relies
|
||||
//! on the compiler to make it fast.
|
||||
|
||||
#![allow(non_upper_case_globals, non_camel_case_types, non_snake_case)]
|
||||
use std::arch::x86_64::*;
|
||||
use std::f64::consts::PI;
|
||||
|
||||
#[repr(C)]
|
||||
struct body {
|
||||
#[derive(Clone, Debug)]
|
||||
struct Body {
|
||||
position: [f64; 3],
|
||||
velocity: [f64; 3],
|
||||
mass: f64,
|
||||
}
|
||||
|
||||
const SOLAR_MASS: f64 = 4. * PI * PI;
|
||||
const DAYS_PER_YEAR: f64 = 365.24;
|
||||
/// Number of bodies modeled in the simulation.
|
||||
const BODIES_COUNT: usize = 5;
|
||||
|
||||
const STARTING_STATE: [body; BODIES_COUNT] = [
|
||||
body {
|
||||
// Sun
|
||||
const SOLAR_MASS: f64 = (4. * PI * PI);
|
||||
const DAYS_PER_YEAR: f64 = 365.24;
|
||||
|
||||
/// Number of body-body interactions.
|
||||
const INTERACTIONS: usize = BODIES_COUNT * (BODIES_COUNT - 1) / 2;
|
||||
|
||||
/// Initial state of the simulation.
|
||||
const STARTING_STATE: [Body; BODIES_COUNT] = [
|
||||
// Sun
|
||||
Body {
|
||||
mass: SOLAR_MASS,
|
||||
position: [0.; 3],
|
||||
velocity: [0.; 3],
|
||||
},
|
||||
body {
|
||||
// Jupiter
|
||||
mass: 9.54791938424326609e-04 * SOLAR_MASS,
|
||||
// Jupiter
|
||||
Body {
|
||||
position: [
|
||||
4.84143144246472090e+00,
|
||||
-1.16032004402742839e+00,
|
||||
-1.03622044471123109e-01,
|
||||
4.841_431_442_464_72e0,
|
||||
-1.160_320_044_027_428_4e0,
|
||||
-1.036_220_444_711_231_1e-1,
|
||||
],
|
||||
velocity: [
|
||||
1.66007664274403694e-03 * DAYS_PER_YEAR,
|
||||
7.69901118419740425e-03 * DAYS_PER_YEAR,
|
||||
-6.90460016972063023e-05 * DAYS_PER_YEAR,
|
||||
1.660_076_642_744_037e-3 * DAYS_PER_YEAR,
|
||||
7.699_011_184_197_404e-3 * DAYS_PER_YEAR,
|
||||
-6.904_600_169_720_63e-5 * DAYS_PER_YEAR,
|
||||
],
|
||||
mass: 9.547_919_384_243_266e-4 * SOLAR_MASS,
|
||||
},
|
||||
body {
|
||||
// Saturn
|
||||
mass: 2.85885980666130812e-04 * SOLAR_MASS,
|
||||
// Saturn
|
||||
Body {
|
||||
position: [
|
||||
8.34336671824457987e+00,
|
||||
4.12479856412430479e+00,
|
||||
-4.03523417114321381e-01,
|
||||
8.343_366_718_244_58e0,
|
||||
4.124_798_564_124_305e0,
|
||||
-4.035_234_171_143_214e-1,
|
||||
],
|
||||
velocity: [
|
||||
-2.76742510726862411e-03 * DAYS_PER_YEAR,
|
||||
4.99852801234917238e-03 * DAYS_PER_YEAR,
|
||||
2.30417297573763929e-05 * DAYS_PER_YEAR,
|
||||
-2.767_425_107_268_624e-3 * DAYS_PER_YEAR,
|
||||
4.998_528_012_349_172e-3 * DAYS_PER_YEAR,
|
||||
2.304_172_975_737_639_3e-5 * DAYS_PER_YEAR,
|
||||
],
|
||||
mass: 2.858_859_806_661_308e-4 * SOLAR_MASS,
|
||||
},
|
||||
body {
|
||||
// Uranus
|
||||
mass: 4.36624404335156298e-05 * SOLAR_MASS,
|
||||
// Uranus
|
||||
Body {
|
||||
position: [
|
||||
1.28943695621391310e+01,
|
||||
-1.51111514016986312e+01,
|
||||
-2.23307578892655734e-01,
|
||||
1.289_436_956_213_913_1e1,
|
||||
-1.511_115_140_169_863_1e1,
|
||||
-2.233_075_788_926_557_3e-1,
|
||||
],
|
||||
velocity: [
|
||||
2.96460137564761618e-03 * DAYS_PER_YEAR,
|
||||
2.37847173959480950e-03 * DAYS_PER_YEAR,
|
||||
-2.96589568540237556e-05 * DAYS_PER_YEAR,
|
||||
2.964_601_375_647_616e-3 * DAYS_PER_YEAR,
|
||||
2.378_471_739_594_809_5e-3 * DAYS_PER_YEAR,
|
||||
-2.965_895_685_402_375_6e-5 * DAYS_PER_YEAR,
|
||||
],
|
||||
mass: 4.366_244_043_351_563e-5 * SOLAR_MASS,
|
||||
},
|
||||
body {
|
||||
// Neptune
|
||||
mass: 5.15138902046611451e-05 * SOLAR_MASS,
|
||||
// Neptune
|
||||
Body {
|
||||
position: [
|
||||
1.53796971148509165e+01,
|
||||
-2.59193146099879641e+01,
|
||||
1.79258772950371181e-01,
|
||||
1.537_969_711_485_091_1e1,
|
||||
-2.591_931_460_998_796_4e1,
|
||||
1.792_587_729_503_711_8e-1,
|
||||
],
|
||||
velocity: [
|
||||
2.68067772490389322e-03 * DAYS_PER_YEAR,
|
||||
1.62824170038242295e-03 * DAYS_PER_YEAR,
|
||||
-9.51592254519715870e-05 * DAYS_PER_YEAR,
|
||||
2.680_677_724_903_893_2e-3 * DAYS_PER_YEAR,
|
||||
1.628_241_700_382_423e-3 * DAYS_PER_YEAR,
|
||||
-9.515_922_545_197_159e-5 * DAYS_PER_YEAR,
|
||||
],
|
||||
mass: 5.151_389_020_466_114_5e-5 * SOLAR_MASS,
|
||||
},
|
||||
];
|
||||
|
||||
// Figure out how many total different interactions there are between each
|
||||
// body and every other body. Some of the calculations for these
|
||||
// interactions will be calculated two at a time by using x86 SSE
|
||||
// instructions and because of that it will also be useful to have a
|
||||
// ROUNDED_INTERACTIONS_COUNT that is equal to the next highest even number
|
||||
// which is equal to or greater than INTERACTIONS_COUNT.
|
||||
const INTERACTIONS_COUNT: usize = BODIES_COUNT * (BODIES_COUNT - 1) / 2;
|
||||
const ROUNDED_INTERACTIONS_COUNT: usize = INTERACTIONS_COUNT + INTERACTIONS_COUNT % 2;
|
||||
/// Adjust the Sun's velocity to offset system momentum.
|
||||
fn offset_momentum(bodies: &mut [Body; BODIES_COUNT]) {
|
||||
let (sun, planets) = bodies.split_first_mut().unwrap();
|
||||
|
||||
// It's useful to have two arrays to keep track of the position_Deltas
|
||||
// and magnitudes of force between the bodies for each interaction. For the
|
||||
// position_Deltas array, instead of using a one dimensional array of
|
||||
// structures that each contain the X, Y, and Z components for a position
|
||||
// delta, a two dimensional array is used instead which consists of three
|
||||
// arrays that each contain all of the X, Y, and Z components for all of the
|
||||
// position_Deltas. This allows for more efficient loading of this data into
|
||||
// SSE registers. Both of these arrays are also set to contain
|
||||
// ROUNDED_INTERACTIONS_COUNT elements to simplify one of the following
|
||||
// loops and to also keep the second and third arrays in position_Deltas
|
||||
// aligned properly.
|
||||
#[derive(Copy, Clone)]
|
||||
#[repr(C)]
|
||||
union Interactions {
|
||||
scalars: [f64; ROUNDED_INTERACTIONS_COUNT],
|
||||
vectors: [__m128d; ROUNDED_INTERACTIONS_COUNT / 2],
|
||||
}
|
||||
|
||||
impl Interactions {
|
||||
/// Returns a refrence to the storage as `f64`s.
|
||||
pub fn as_scalars(&mut self) -> &mut [f64; ROUNDED_INTERACTIONS_COUNT] {
|
||||
// Safety: the in-memory representation of `f64` and `__m128d` is
|
||||
// compatible, so accesses to the union members is safe in any
|
||||
// order..
|
||||
unsafe { &mut self.scalars }
|
||||
}
|
||||
|
||||
/// Returns a reference to the storage as `__m128d`s.
|
||||
pub fn as_vectors(&mut self) -> &mut [__m128d; ROUNDED_INTERACTIONS_COUNT / 2] {
|
||||
// Safety: the in-memory representation of `f64` and `__m128d` is
|
||||
// compatible, so accesses to the union members is safe in any
|
||||
// order..
|
||||
unsafe { &mut self.vectors }
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the momentum of each body and conserve momentum of the system by
|
||||
// adding to the Sun's velocity the appropriate opposite velocity needed in
|
||||
// order to offset that body's momentum.
|
||||
fn offset_Momentum(bodies: &mut [body; BODIES_COUNT]) {
|
||||
for i in 0..BODIES_COUNT {
|
||||
sun.velocity = [0.; 3];
|
||||
for planet in planets {
|
||||
for m in 0..3 {
|
||||
bodies[0].velocity[m] -= bodies[i].velocity[m] * bodies[i].mass / SOLAR_MASS;
|
||||
sun.velocity[m] -= planet.velocity[m] * planet.mass / SOLAR_MASS;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Output the total energy of the system.
|
||||
fn output_Energy(bodies: &mut [body; BODIES_COUNT]) {
|
||||
/// A convenient way of computing `x` squared
|
||||
fn sqr(x: f64) -> f64 {
|
||||
x * x
|
||||
}
|
||||
|
||||
/// Print the system energy.
|
||||
fn output_energy(bodies: &mut [Body; BODIES_COUNT]) {
|
||||
let mut energy = 0.;
|
||||
for i in 0..BODIES_COUNT {
|
||||
|
||||
for (i, body) in bodies.iter().enumerate() {
|
||||
// Add the kinetic energy for each body.
|
||||
energy += 0.5
|
||||
* bodies[i].mass
|
||||
* (bodies[i].velocity[0] * bodies[i].velocity[0]
|
||||
+ bodies[i].velocity[1] * bodies[i].velocity[1]
|
||||
+ bodies[i].velocity[2] * bodies[i].velocity[2]);
|
||||
energy +=
|
||||
0.5 * body.mass * (
|
||||
sqr(body.velocity[0])
|
||||
+ sqr(body.velocity[1])
|
||||
+ sqr(body.velocity[2])
|
||||
);
|
||||
|
||||
// Add the potential energy between this body and
|
||||
// every other body
|
||||
for j in i + 1..BODIES_COUNT {
|
||||
let mut position_Delta = [0.; 3];
|
||||
|
||||
for m in 0..3 {
|
||||
position_Delta[m] = bodies[i].position[m] - bodies[j].position[m];
|
||||
}
|
||||
|
||||
energy -= bodies[i].mass * bodies[j].mass
|
||||
/ f64::sqrt(
|
||||
position_Delta[0] * position_Delta[0]
|
||||
+ position_Delta[1] * position_Delta[1]
|
||||
+ position_Delta[2] * position_Delta[2],
|
||||
// Add the potential energy between this body and every other body.
|
||||
for body2 in &bodies[i + 1..BODIES_COUNT] {
|
||||
energy -= body.mass * body2.mass /
|
||||
f64::sqrt(
|
||||
sqr(body.position[0] - body2.position[0])
|
||||
+ sqr(body.position[1] - body2.position[1])
|
||||
+ sqr(body.position[2] - body2.position[2]),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Output the total energy of the system
|
||||
println!("{:.9}", energy);
|
||||
println!("{:.9}", energy);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance all the bodies in the system by one timestep. Calculate the
|
||||
// interactions between all the bodies, update each body's velocity based on
|
||||
// those interactions, and update each body's position by the distance it
|
||||
// travels in a timestep at it's updated velocity.
|
||||
#[cfg(target_feature = "sse2")]
|
||||
fn advance(
|
||||
bodies: &mut [body; BODIES_COUNT],
|
||||
position_Deltas: &mut [Interactions; 3],
|
||||
magnitudes: &mut Interactions,
|
||||
) {
|
||||
// Calculate the position_Deltas between the bodies for each interaction.
|
||||
/// Steps the simulation foward by one time step
|
||||
fn advance(bodies: &mut [Body; BODIES_COUNT]) {
|
||||
// Compute point-to-point vectors between each unique pair of bodies.
|
||||
// Note: this array is large enough that computing it mutable and returning
|
||||
// it from a block, as I did with magnitudes below, generates a memcpy.
|
||||
// Sigh. So I'll leave it mutable.
|
||||
let mut position_deltas = [[0.;3]; INTERACTIONS];
|
||||
{
|
||||
let mut k = 0;
|
||||
for i in 0..BODIES_COUNT - 1 {
|
||||
for j in i + 1..BODIES_COUNT {
|
||||
for m in 0..3 {
|
||||
position_Deltas[m].as_scalars()[k] =
|
||||
bodies[i].position[m] - bodies[j].position[m];
|
||||
|
||||
for i in 0..BODIES_COUNT-1 {
|
||||
for j in i+1..BODIES_COUNT {
|
||||
for (m, pd) in position_deltas[k].iter_mut().enumerate() {
|
||||
*pd = bodies[i].position[m] - bodies[j].position[m];
|
||||
}
|
||||
k += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the magnitudes of force between the bodies for each
|
||||
// interaction. This loop processes two interactions at a time which is why
|
||||
// ROUNDED_INTERACTIONS_COUNT/2 iterations are done.
|
||||
for i in 0..ROUNDED_INTERACTIONS_COUNT / 2 {
|
||||
// Load position_Deltas of two bodies into position_Delta.
|
||||
let mut position_Delta = [unsafe { _mm_setzero_pd() }; 3];
|
||||
// Compute the `i/d^3` magnitude between each pair of bodies.
|
||||
let magnitudes = {
|
||||
let mut magnitudes = [0.; INTERACTIONS];
|
||||
for (i, mag) in magnitudes.iter_mut().enumerate() {
|
||||
let distance_squared = sqr(position_deltas[i][0])
|
||||
+ sqr(position_deltas[i][1])
|
||||
+ sqr(position_deltas[i][2]);
|
||||
|
||||
for m in 0..3 {
|
||||
position_Delta[m] = position_Deltas[m].as_vectors()[i];
|
||||
*mag = 0.01 / (distance_squared * distance_squared.sqrt());
|
||||
}
|
||||
magnitudes
|
||||
};
|
||||
|
||||
let distance_Squared: __m128d = unsafe {
|
||||
_mm_add_pd(
|
||||
_mm_add_pd(
|
||||
_mm_mul_pd(position_Delta[0], position_Delta[0]),
|
||||
_mm_mul_pd(position_Delta[1], position_Delta[1]),
|
||||
),
|
||||
_mm_mul_pd(position_Delta[2], position_Delta[2]),
|
||||
)
|
||||
};
|
||||
|
||||
// Doing square roots normally using double precision floating point
|
||||
// math can be quite time consuming so SSE's much faster single
|
||||
// precision reciprocal square root approximation instruction is used as
|
||||
// a starting point instead. The precision isn't quite sufficient to get
|
||||
// acceptable results so two iterations of the Newton–Raphson method are
|
||||
// done to improve precision further.
|
||||
let mut distance_Reciprocal: __m128d =
|
||||
unsafe { _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(distance_Squared))) };
|
||||
|
||||
for _ in 0..2 {
|
||||
// Normally the last four multiplications in this equation would
|
||||
// have to be done sequentially but by placing the last
|
||||
// multiplication in parentheses, a compiler can then schedule that
|
||||
// multiplication earlier.
|
||||
distance_Reciprocal = unsafe {
|
||||
_mm_sub_pd(
|
||||
_mm_mul_pd(distance_Reciprocal, _mm_set1_pd(1.5)),
|
||||
_mm_mul_pd(
|
||||
_mm_mul_pd(
|
||||
_mm_mul_pd(_mm_set1_pd(0.5), distance_Squared),
|
||||
distance_Reciprocal,
|
||||
),
|
||||
_mm_mul_pd(distance_Reciprocal, distance_Reciprocal),
|
||||
),
|
||||
)
|
||||
};
|
||||
}
|
||||
|
||||
// Calculate the magnitudes of force between the bodies. Typically this
|
||||
// calculation would probably be done by using a division by the cube of
|
||||
// the distance (or similarly a multiplication by the cube of its
|
||||
// reciprocal) but for better performance on modern computers it often
|
||||
// will make sense to do part of the calculation using a division by the
|
||||
// distance_Squared which was already calculated earlier. Additionally
|
||||
// this method is probably a little more accurate due to less rounding
|
||||
// as well.
|
||||
magnitudes.as_vectors()[i] = unsafe {
|
||||
_mm_mul_pd(
|
||||
_mm_div_pd(_mm_set1_pd(0.01), distance_Squared),
|
||||
distance_Reciprocal,
|
||||
)
|
||||
};
|
||||
}
|
||||
|
||||
// Use the calculated magnitudes of force to update the velocities for all
|
||||
// of the bodies.
|
||||
// Apply every other body's gravitation to each body's velocity
|
||||
{
|
||||
let mut k = 0;
|
||||
for i in 0..BODIES_COUNT - 1 {
|
||||
for j in i + 1..BODIES_COUNT {
|
||||
let i_mass_magnitude = bodies[i].mass * magnitudes.as_scalars()[k];
|
||||
let j_mass_magnitude = bodies[j].mass * magnitudes.as_scalars()[k];
|
||||
for m in 0..3 {
|
||||
bodies[i].velocity[m] -= position_Deltas[m].as_scalars()[k] * j_mass_magnitude;
|
||||
bodies[j].velocity[m] += position_Deltas[m].as_scalars()[k] * i_mass_magnitude;
|
||||
for i in 0..BODIES_COUNT-1 {
|
||||
for j in i+1..BODIES_COUNT {
|
||||
let i_mass_mag = bodies[i].mass * magnitudes[k];
|
||||
let j_mass_mag = bodies[j].mass * magnitudes[k];
|
||||
for (m, pd) in position_deltas[k].iter().enumerate() {
|
||||
bodies[i].velocity[m] -= *pd * j_mass_mag;
|
||||
bodies[j].velocity[m] += *pd * i_mass_mag;
|
||||
}
|
||||
k += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Use the updated velocities to update the positions for all of the bodies.
|
||||
for i in 0..BODIES_COUNT {
|
||||
for m in 0..3 {
|
||||
bodies[i].position[m] += 0.01 * bodies[i].velocity[m];
|
||||
// Update each body's position.
|
||||
for body in bodies {
|
||||
for (m, pos) in body.position.iter_mut().enumerate() {
|
||||
*pos += 0.01 * body.velocity[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let mut solar_Bodies = STARTING_STATE;
|
||||
let mut position_Deltas: [Interactions; 3] = [Interactions {
|
||||
scalars: [0.; ROUNDED_INTERACTIONS_COUNT],
|
||||
}; 3];
|
||||
let mut magnitudes: Interactions = Interactions {
|
||||
scalars: [0.; ROUNDED_INTERACTIONS_COUNT],
|
||||
};
|
||||
|
||||
offset_Momentum(&mut solar_Bodies);
|
||||
output_Energy(&mut solar_Bodies);
|
||||
let c = std::env::args().nth(1).unwrap().parse().unwrap();
|
||||
|
||||
let mut solar_bodies = STARTING_STATE;
|
||||
|
||||
offset_momentum(&mut solar_bodies);
|
||||
output_energy(&mut solar_bodies);
|
||||
for _ in 0..c {
|
||||
advance(&mut solar_Bodies, &mut position_Deltas, &mut magnitudes);
|
||||
advance(&mut solar_bodies)
|
||||
}
|
||||
output_Energy(&mut solar_Bodies);
|
||||
output_energy(&mut solar_bodies);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user