287 lines
11 KiB
Rust
287 lines
11 KiB
Rust
|
// The Computer Language Benchmarks Game
|
||
|
// https://salsa.debian.org/benchmarksgame-team/benchmarksgame/
|
||
|
//
|
||
|
// Contributed by Mark C. Lewis.
|
||
|
// Modified slightly by Chad Whipkey.
|
||
|
// Converted from Java to C++ and added SSE support by Branimir Maksimovic.
|
||
|
// Converted from C++ to C by Alexey Medvedchikov.
|
||
|
// Modified by Jeremy Zerfas.
|
||
|
// Converted to Rust by Cliff L. Biffle
|
||
|
|
||
|
#![allow(non_upper_case_globals, non_camel_case_types, non_snake_case)]
|
||
|
use std::arch::x86_64::*;
|
||
|
use std::f64::consts::PI;
|
||
|
use std::mem;
|
||
|
|
||
|
#[repr(C)]
|
||
|
struct body {
|
||
|
position: [f64; 3],
|
||
|
velocity: [f64; 3],
|
||
|
mass: f64,
|
||
|
}
|
||
|
|
||
|
const SOLAR_MASS: f64 = 4. * PI * PI;
|
||
|
const DAYS_PER_YEAR: f64 = 365.24;
|
||
|
const BODIES_COUNT: usize = 5;
|
||
|
|
||
|
static mut solar_Bodies: [body; BODIES_COUNT] = [
|
||
|
body {
|
||
|
// Sun
|
||
|
mass: SOLAR_MASS,
|
||
|
position: [0.; 3],
|
||
|
velocity: [0.; 3],
|
||
|
},
|
||
|
body {
|
||
|
// Jupiter
|
||
|
mass: 9.54791938424326609e-04 * SOLAR_MASS,
|
||
|
position: [
|
||
|
4.84143144246472090e+00,
|
||
|
-1.16032004402742839e+00,
|
||
|
-1.03622044471123109e-01,
|
||
|
],
|
||
|
velocity: [
|
||
|
1.66007664274403694e-03 * DAYS_PER_YEAR,
|
||
|
7.69901118419740425e-03 * DAYS_PER_YEAR,
|
||
|
-6.90460016972063023e-05 * DAYS_PER_YEAR,
|
||
|
],
|
||
|
},
|
||
|
body {
|
||
|
// Saturn
|
||
|
mass: 2.85885980666130812e-04 * SOLAR_MASS,
|
||
|
position: [
|
||
|
8.34336671824457987e+00,
|
||
|
4.12479856412430479e+00,
|
||
|
-4.03523417114321381e-01,
|
||
|
],
|
||
|
velocity: [
|
||
|
-2.76742510726862411e-03 * DAYS_PER_YEAR,
|
||
|
4.99852801234917238e-03 * DAYS_PER_YEAR,
|
||
|
2.30417297573763929e-05 * DAYS_PER_YEAR,
|
||
|
],
|
||
|
},
|
||
|
body {
|
||
|
// Uranus
|
||
|
mass: 4.36624404335156298e-05 * SOLAR_MASS,
|
||
|
position: [
|
||
|
1.28943695621391310e+01,
|
||
|
-1.51111514016986312e+01,
|
||
|
-2.23307578892655734e-01,
|
||
|
],
|
||
|
velocity: [
|
||
|
2.96460137564761618e-03 * DAYS_PER_YEAR,
|
||
|
2.37847173959480950e-03 * DAYS_PER_YEAR,
|
||
|
-2.96589568540237556e-05 * DAYS_PER_YEAR,
|
||
|
],
|
||
|
},
|
||
|
body {
|
||
|
// Neptune
|
||
|
mass: 5.15138902046611451e-05 * SOLAR_MASS,
|
||
|
position: [
|
||
|
1.53796971148509165e+01,
|
||
|
-2.59193146099879641e+01,
|
||
|
1.79258772950371181e-01,
|
||
|
],
|
||
|
velocity: [
|
||
|
2.68067772490389322e-03 * DAYS_PER_YEAR,
|
||
|
1.62824170038242295e-03 * DAYS_PER_YEAR,
|
||
|
-9.51592254519715870e-05 * DAYS_PER_YEAR,
|
||
|
],
|
||
|
},
|
||
|
];
|
||
|
|
||
|
// Calculate the momentum of each body and conserve momentum of the system by
|
||
|
// adding to the Sun's velocity the appropriate opposite velocity needed in
|
||
|
// order to offset that body's momentum.
|
||
|
unsafe fn offset_Momentum(bodies: *mut body) {
|
||
|
for i in 0..BODIES_COUNT {
|
||
|
for m in 0..3 {
|
||
|
(*bodies.add(0)).velocity[m] -=
|
||
|
(*bodies.add(i)).velocity[m] * (*bodies.add(i)).mass / SOLAR_MASS;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Output the total energy of the system.
|
||
|
unsafe fn output_Energy(bodies: *mut body) {
|
||
|
let mut energy = 0.;
|
||
|
for i in 0..BODIES_COUNT {
|
||
|
// Add the kinetic energy for each body.
|
||
|
energy += 0.5
|
||
|
* (*bodies.add(i)).mass
|
||
|
* ((*bodies.add(i)).velocity[0] * (*bodies.add(i)).velocity[0]
|
||
|
+ (*bodies.add(i)).velocity[1] * (*bodies.add(i)).velocity[1]
|
||
|
+ (*bodies.add(i)).velocity[2] * (*bodies.add(i)).velocity[2]);
|
||
|
|
||
|
// Add the potential energy between this body and
|
||
|
// every other body
|
||
|
for j in i + 1..BODIES_COUNT {
|
||
|
let mut position_Delta = [mem::MaybeUninit::<f64>::uninit(); 3];
|
||
|
|
||
|
for m in 0..3 {
|
||
|
position_Delta[m]
|
||
|
.as_mut_ptr()
|
||
|
.write((*bodies.add(i)).position[m] - (*bodies.add(j)).position[m]);
|
||
|
}
|
||
|
let position_Delta: [f64; 3] = mem::transmute(position_Delta);
|
||
|
|
||
|
energy -= (*bodies.add(i)).mass * (*bodies.add(j)).mass
|
||
|
/ f64::sqrt(
|
||
|
position_Delta[0] * position_Delta[0]
|
||
|
+ position_Delta[1] * position_Delta[1]
|
||
|
+ position_Delta[2] * position_Delta[2],
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Output the total energy of the system
|
||
|
println!("{:.9}", energy);
|
||
|
}
|
||
|
|
||
|
// Advance all the bodies in the system by one timestep. Calculate the
|
||
|
// interactions between all the bodies, update each body's velocity based on
|
||
|
// those interactions, and update each body's position by the distance it
|
||
|
// travels in a timestep at it's updated velocity.
|
||
|
unsafe fn advance(bodies: *mut body) {
|
||
|
// Figure out how many total different interactions there are between each
|
||
|
// body and every other body. Some of the calculations for these
|
||
|
// interactions will be calculated two at a time by using x86 SSE
|
||
|
// instructions and because of that it will also be useful to have a
|
||
|
// ROUNDED_INTERACTIONS_COUNT that is equal to the next highest even number
|
||
|
// which is equal to or greater than INTERACTIONS_COUNT.
|
||
|
const INTERACTIONS_COUNT: usize = BODIES_COUNT * (BODIES_COUNT - 1) / 2;
|
||
|
const ROUNDED_INTERACTIONS_COUNT: usize = INTERACTIONS_COUNT + INTERACTIONS_COUNT % 2;
|
||
|
|
||
|
// It's useful to have two arrays to keep track of the position_Deltas
|
||
|
// and magnitudes of force between the bodies for each interaction. For the
|
||
|
// position_Deltas array, instead of using a one dimensional array of
|
||
|
// structures that each contain the X, Y, and Z components for a position
|
||
|
// delta, a two dimensional array is used instead which consists of three
|
||
|
// arrays that each contain all of the X, Y, and Z components for all of the
|
||
|
// position_Deltas. This allows for more efficient loading of this data into
|
||
|
// SSE registers. Both of these arrays are also set to contain
|
||
|
// ROUNDED_INTERACTIONS_COUNT elements to simplify one of the following
|
||
|
// loops and to also keep the second and third arrays in position_Deltas
|
||
|
// aligned properly.
|
||
|
#[repr(align(16))]
|
||
|
#[derive(Copy, Clone)]
|
||
|
struct Align16([f64; ROUNDED_INTERACTIONS_COUNT]);
|
||
|
|
||
|
static mut position_Deltas: [Align16; 3] = [Align16([0.; ROUNDED_INTERACTIONS_COUNT]); 3];
|
||
|
static mut magnitudes: Align16 = Align16([0.; ROUNDED_INTERACTIONS_COUNT]);
|
||
|
|
||
|
// Calculate the position_Deltas between the bodies for each interaction.
|
||
|
{
|
||
|
let mut k = 0;
|
||
|
for i in 0..BODIES_COUNT - 1 {
|
||
|
for j in i + 1..BODIES_COUNT {
|
||
|
for m in 0..3 {
|
||
|
position_Deltas[m].0[k] =
|
||
|
(*bodies.add(i)).position[m] - (*bodies.add(j)).position[m];
|
||
|
}
|
||
|
k += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Calculate the magnitudes of force between the bodies for each
|
||
|
// interaction. This loop processes two interactions at a time which is why
|
||
|
// ROUNDED_INTERACTIONS_COUNT/2 iterations are done.
|
||
|
for i in 0..ROUNDED_INTERACTIONS_COUNT / 2 {
|
||
|
// Load position_Deltas of two bodies into position_Delta.
|
||
|
let mut position_Delta = [mem::MaybeUninit::<__m128d>::uninit(); 3];
|
||
|
|
||
|
for m in 0..3 {
|
||
|
position_Delta[m]
|
||
|
.as_mut_ptr()
|
||
|
.write(*(&position_Deltas[m].0 as *const f64 as *const __m128d).add(i));
|
||
|
}
|
||
|
|
||
|
let position_Delta: [__m128d; 3] = mem::transmute(position_Delta);
|
||
|
|
||
|
let distance_Squared: __m128d = _mm_add_pd(
|
||
|
_mm_add_pd(
|
||
|
_mm_mul_pd(position_Delta[0], position_Delta[0]),
|
||
|
_mm_mul_pd(position_Delta[1], position_Delta[1]),
|
||
|
),
|
||
|
_mm_mul_pd(position_Delta[2], position_Delta[2]),
|
||
|
);
|
||
|
|
||
|
// Doing square roots normally using double precision floating point
|
||
|
// math can be quite time consuming so SSE's much faster single
|
||
|
// precision reciprocal square root approximation instruction is used as
|
||
|
// a starting point instead. The precision isn't quite sufficient to get
|
||
|
// acceptable results so two iterations of the Newton–Raphson method are
|
||
|
// done to improve precision further.
|
||
|
let mut distance_Reciprocal: __m128d =
|
||
|
_mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(distance_Squared)));
|
||
|
|
||
|
for _ in 0..2 {
|
||
|
// Normally the last four multiplications in this equation would
|
||
|
// have to be done sequentially but by placing the last
|
||
|
// multiplication in parentheses, a compiler can then schedule that
|
||
|
// multiplication earlier.
|
||
|
distance_Reciprocal = _mm_sub_pd(
|
||
|
_mm_mul_pd(distance_Reciprocal, _mm_set1_pd(1.5)),
|
||
|
_mm_mul_pd(
|
||
|
_mm_mul_pd(
|
||
|
_mm_mul_pd(_mm_set1_pd(0.5), distance_Squared),
|
||
|
distance_Reciprocal,
|
||
|
),
|
||
|
_mm_mul_pd(distance_Reciprocal, distance_Reciprocal),
|
||
|
),
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// Calculate the magnitudes of force between the bodies. Typically this
|
||
|
// calculation would probably be done by using a division by the cube of
|
||
|
// the distance (or similarly a multiplication by the cube of its
|
||
|
// reciprocal) but for better performance on modern computers it often
|
||
|
// will make sense to do part of the calculation using a division by the
|
||
|
// distance_Squared which was already calculated earlier. Additionally
|
||
|
// this method is probably a little more accurate due to less rounding
|
||
|
// as well.
|
||
|
(magnitudes.0.as_mut_ptr() as *mut __m128d)
|
||
|
.add(i)
|
||
|
.write(_mm_mul_pd(
|
||
|
_mm_div_pd(_mm_set1_pd(0.01), distance_Squared),
|
||
|
distance_Reciprocal,
|
||
|
));
|
||
|
}
|
||
|
|
||
|
// Use the calculated magnitudes of force to update the velocities for all
|
||
|
// of the bodies.
|
||
|
{
|
||
|
let mut k = 0;
|
||
|
for i in 0..BODIES_COUNT - 1 {
|
||
|
for j in i + 1..BODIES_COUNT {
|
||
|
let i_mass_magnitude = (*bodies.add(i)).mass * magnitudes.0[k];
|
||
|
let j_mass_magnitude = (*bodies.add(j)).mass * magnitudes.0[k];
|
||
|
for m in 0..3 {
|
||
|
(*bodies.add(i)).velocity[m] -= position_Deltas[m].0[k] * j_mass_magnitude;
|
||
|
(*bodies.add(j)).velocity[m] += position_Deltas[m].0[k] * i_mass_magnitude;
|
||
|
}
|
||
|
k += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Use the updated velocities to update the positions for all of the bodies.
|
||
|
for i in 0..BODIES_COUNT {
|
||
|
for m in 0..3 {
|
||
|
(*bodies.add(i)).position[m] += 0.01 * (*bodies.add(i)).velocity[m];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn main() {
|
||
|
unsafe {
|
||
|
offset_Momentum(solar_Bodies.as_mut_ptr());
|
||
|
output_Energy(solar_Bodies.as_mut_ptr());
|
||
|
let c = std::env::args().nth(1).unwrap().parse().unwrap();
|
||
|
for _ in 0..c {
|
||
|
advance(solar_Bodies.as_mut_ptr());
|
||
|
}
|
||
|
output_Energy(solar_Bodies.as_mut_ptr());
|
||
|
}
|
||
|
}
|