/// A virtual 2d grid in an ordinary vector. Taken from day 8's puzzle solving implementation #[derive(Debug)] pub struct Grid { width: usize, pub vec: Vec, } impl Grid { pub fn new(width: usize) -> Self { Grid { width, vec: Vec::new(), } } // Convert x,y coordinate into linear array index pub fn xy_idx(&self, x: usize, y: usize) -> usize { (y * self.width) + x } /// Convert linear array index to x,y coordinate pub fn idx_xy(&self, idx: usize) -> (usize, usize) { (idx % self.width, idx / self.width) } pub fn get(&self, idx: usize) -> Option<&T> { self.vec.get(idx) } pub fn get_mut(&mut self, idx: usize) -> Option<&mut T> { self.vec.get_mut(idx) } pub fn row_first_idx(&self, row: usize) -> usize { let idx = row * self.width; if idx < self.vec.len() { idx } else { self.vec.len() } } pub fn row_last_idx(&self, row: usize) -> usize { if (row + 1) > self.num_rows() { return self.vec.len(); } self.row_first_idx(row + 1) - 1 } pub fn num_rows(&self) -> usize { self.vec.len() / self.width } pub fn num_cols(&self) -> usize { self.width } pub fn get_row(&mut self, row_num: usize) -> &mut [T] { let start = self.row_first_idx(row_num); let end = self.row_last_idx(row_num); &mut self.vec[start..=end] } pub fn get_row_indexes(&self, row_num: usize) -> Vec { let start = self.row_first_idx(row_num); let end = self.row_last_idx(row_num); (start..=end).collect() } pub fn get_column_indexes(&self, col_num: usize) -> Vec { let mut indexes = Vec::new(); if col_num >= self.num_cols() { panic!( "Asked for column {}, there are {} columns", col_num, self.num_cols() ); } for r in 0..self.num_rows() { let idx = self.width * r + col_num; indexes.push(idx); } indexes } }